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Abstract. In this paper, by using the method of characteristic curves for solving linear partial
differential equations, we obtain the whole classification of the integrals of motion for the
Rabinovich systems

ẋ = hy − v1x + yz ẏ = hx − v2y − xz ż = −v3z + xy.

1. Introduction and statement of the main results

We consider the Rabinovich system

ẋ = hy − v1x + yz = P(x, y, z)

ẏ = hx − v2y − xz = Q(x, y, z)

ż = −v3z + xy = R(x, y, z)

which is a three-wave interaction model, where x, y and z are real variables; v1, v2 and v3 are
the damping rates and h is proportional to the driving amplitude of the feeder wave (see, for
instance, [6] or [1]).

A real polynomial f (x, y, z) is called a Darboux polynomial of the Rabinovich system if

∂f

∂x
P +

∂f

∂y
Q +

∂f

∂z
R = kf (1)

for some real polynomial k(x, y, z), which is called the cofactor of f .
We say that a real function

H : R3 × R −→ R (x, y, z, t) �−→ H(x, y, z, t)

is a first integral of the Rabinovich system if it is constant on all solution curves (x(t), y(t),
z(t)) of the Rabinovich system, that is, H(x(t), y(t), z(t), t) ≡ constant for all values of t for
which the solution (x(t), y(t), z(t)) is defined on R3. In particular, if the first integral H is
independent of the time and it is a polynomial, then it is called a polynomial first integral. If
the first integral H is of the form f (x, y, z) exp (kt), then it is called an integral of motion,
where f (x, y, z) is a polynomial, and k is a real constant.

Using the Painlevé method in 1984 Bountis et al [1] found three integrals of motion as
follows:
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Bellaterra, Barcelona, Spain. E-mail: zhang@bianya.crm.es.

0305-4470/00/285137+19$30.00 © 2000 IOP Publishing Ltd 5137



5138 X Zhang

• I = (x2 + y2 − 4hz)e2vt with v1 = v2 = v > 0, v3 = 2v, h �= 0;
• I = (x2 − y2 − 2z2)e2vt with v1 = v2 = v3 = v > 0, h �= 0;
• I = (x2 + y2)e2vt with v1 = v2 = v > 0, h = 0.

In 1991, by making use of some algebraic methods, Giacomini et al [3] obtained the following
four integrals of motion:

• I = y2 + (h − z)2 with v2 = v3 = 0;
• I = x2 − (z + h)2 with v1 = v3 = 0;
• I = (y2 + z2)e2v3t with v2 = v3, h = 0;
• I = (x2 − z2)e2v3t with v1 = v3, h = 0.

In this paper, by using the method of characteristic curves for solving linear partial
differential equations, we characterize all integrals of motion. Our main result is the following.

Theorem 1. The function H(x, y, z, t) is an integral of motion for the Rabinovich system if
and only if one of the following statements holds.

(a) v1 = v2 = v3 = 0: the function

H(x, y, z) =
m∑
s=0

m−s∑
i=0

am−s
i (x2 + y2 − 4hz)m−s−i (y2 + z2 − 2hz)i

is a polynomial first integral, where m is an arbitrary positive integer,
∑m

i=0(a
m
i )

2 �= 0,
and am−s

i is an arbitrary constant for s = 1, 2, . . . , m; i = 0, 1, . . . , m − s.
(b) v1 = v2 = v3 �= 0 and h = 0: the function

H(x, y, z, t) =
m∑
i=0

ai(x
2 + y2)m−i (y2 + z2)ie2mv1t

is an integral of motion, where m is an arbitrary positive integer and
∑m

i=0 a
2
i �= 0.

(c) v1 = v2 = v3 �= 0 and h �= 0: the function (x2 − y2 − 2z2)me2mv1t is an integral of
motion, where m is an arbitrary positive integer.

(d) v1 = v2 = 0, v2 �= v3 and h = 0: the function H = ∑m
i=0 ai(x

2 + y2)i is a polynomial
first integral, where m is an arbitrary positive integer and

∑m
i=0 a

2
i �= 0.

(e) v1 = v2 �= 0, v2 �= v3 and h = 0: the function H = (x2 + y2)me2mv1t is an integral of
motion, where m is an arbitrary positive integer.

(f) v1 = v2 �= 0, v3 = 2v1 and h �= 0: the function H = (x2 +y2 −4hz)me2mv1t is an integral
of motion, where m is an arbitrary positive integer.

(g) v1 �= v2 and v2 = v3 = 0: the function H = ∑m
i=1 ai(y

2 + z2 − 2hz)i is a polynomial
first integral, where m is an arbitrary positive integer and

∑m
i=1 a

2
i �= 0.

(h) v1 �= v2, v2 = v3 �= 0 and h = 0: the function H = (y2 + z2)me2mv2t is an integral of
motion, where m is an arbitrary positive integer.

(i) v1 �= v2, v2 �= v3, v3 = v1 �= 0 and h = 0: the function (x2 − z2)me2mv1t is an integral of
motion, where m is an arbitrary positive integer.

(j) v1 �= v2, v2 �= v3, v3 = v1 = 0: the functionH = ∑m
i=1 ai(x

2−z2−2hz)i is a polynomial
first integral, where m is an arbitrary positive integer and

∑m
i=1 a

2
i �= 0.

The following proposition shows the relationship between the Darboux polynomial and
the integral of motion for the Rabinovich systems.

Proposition 2. A Rabinovich system has a Darboux polynomial f (x, y, z) with a constant
cofactor k if and only if the function H(x, y, z, t) = f (x, y, z) exp(−kt) is a first integral.
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The proof of this proposition is easy, and follows in the same way as the proof of
proposition 2 of [5], so we omit it. We note that from this proposition that, if we want to
prove theorem 1, we only need to characterize all Darboux polynomials with the constant
cofactor of the Rabinovich systems.

From theorem 1 and proposition 2, we easily obtain the following corollary.

Corollary 3. (a) There are Rabinovich systems having irreducible polynomial first integrals
of any even degree.

(b) The Rabinovich systems have no polynomial first integrals of odd degree.

This paper is organized as follows. In section 2, we introduce the method of characteristic
curves for solving linear partial differential equations: this is the main tool of this paper. In
section 3, we prove theorem 1.

2. The method of characteristic curves

This section states the method of characteristic curves for solving linear partial differential
equations (see, for instance, chapter 2 of [2]), which is a main tool of this paper.

Consider the following first-order linear partial differential equation:

a(x, y, z)Ax + b(x, y, z)Ay + c(x, y, z)Az + d(x, y, z)A = f (x, y, z) (2)

where A = A(x, y, z) and a, b, c, d and f are continuous differentiable.
A curve (x(t), y(t), z(t)) in the xyz-space is a characteristic curve for the partial

differential equation (2) if, at each point (x0, y0, z0) on the curve, the vector (a(x0, y0, z0),
b(x0, y0, z0), c(x0, y0, z0)) is tangent to the curve. That is, the characteristic curve is a solution
of the system

dx

dt
= a(x(t), y(t), z(t))

dy

dt
= b(x(t), y(t), z(t))

dz

dt
= c(x(t), y(t), z(t)).

In practice, for convenience we treat z as the independent variable instead of t , then the above
system is reduced to the system (assuming c(x, y, z) �= 0)

dx

dz
= a(x, y, z)

c(x, y, z)

dy

dz
= b(x, y, z)

c(x, y, z)
. (3)

This ordinary differential equation is known as the characteristic equation of (2).
Suppose that (3) has a solution in the implicit form g(x, y, z) = c1, h(x, y, z) = c2, where

c1 and c2 are arbitrary constants. We consider the change of variables

u = g(x, y, z) v = h(x, y, z) w = z (4)

and we write its inverse transformation as x = p(u, v,w), y = q(u, v,w) and z = r(u, v,w)

(of course, sometimes the explicit inverse transformation cannot be obtained, or is not well
defined). Then linear partial differential equation (2) becomes an ordinary differential equation
in w (for fixed u and v)

c(u, v,w)Aw + d(u, v,w)A = f (u, v,w) (5)

where c, d , A and f are c, d , A and f , written in terms of u, v and w.
If A = A(u, v,w) is a solution of (5), then by transformation (4)

A(x, y, z) = A(g(x, y, z), h(x, y, z), z)

is a solution of the linear partial differential equation (2). Moreover, the general solution of (5)
is that of (2), written in terms of x, y and z by using (4).
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3. The proof of theorem 1

The proof of the ‘if’ part follows from some straightforward calculations; the details are
omitted. We now prove the ‘only if’ part.

From proposition 2, H(x, y, z, t) = f (x, y, z)e−kt is an integral of motion for the
Rabinovich system if and only if f (x, y, z) is a Darboux polynomial with the constant cofactor
k. We assume that

f (x, y, z) =
n∑

i=0

fi(x, y, z)

is a Darboux polynomial of degree n for the Rabinovich system with the constant cofactor
k(x, y, z) = c, where fi is a homogeneous polynomial of degree i for i = 0, 1, . . . , n.

Substituting f and k = c into equation (1) and identifying the terms of the same degree,
we obtain

yz
∂fn

∂x
− xz

∂fn

∂y
+ xy

∂fn

∂z
= 0 (6)

yz
∂fi

∂x
− xz

∂fi

∂y
+ xy

∂fi

∂z
= (v1x − hy)

∂fi+1

∂x
+ (v2y − hx)

∂fi+1

∂y
+ v3z

∂fi+1

∂z
+ cfi+1 (7)

for i = n − 1, n − 2, . . . , 1, 0.
In what follows, in order to prove our theorem we will use the method of characteristic

curves for solving linear partial differential equations. The characteristic equation associated
with (6) is

dx

dy
= −y

x

dz

dy
= −y

z
.

Its general solution is

x2 + y2 = c1 y2 + z2 = c2

where c1 and c2 are arbitrary constants.
We consider the change of variables

u = x2 + y2 v = y2 + z2 w = y. (8)

Correspondingly, the inverse transformation is

x = ±
√
u − w2 y = w z = ±

√
v − w2. (9)

From equation (6) we obtain the ordinary differential equation

−
(
±

√
u − w2

) (
±

√
v − w2

) df n

dw
= 0

where f n(u, v,w) = fn(x, y, z), and u and v are fixed. In the following, unless otherwise
specified, we will always denote by R(u, v,w) the function R(x, y, z), written in the variables
u, v and w by using (9).

Solving this equation we obtain that

f n(u, v,w) = An(u, v)

where An is an arbitrary function in u and v. In order that fn(x, y, z) = f n(u, v,w) =
A(x2 + y2, y2 + z2) is a homogeneous polynomial of degree n in x, y and z, the integer n must
be even. Without loss of generality, we can assume that n = 2m, and that the general solution
of (6) is

f2m =
m∑
i=0

ami (x
2 + y2)m−i (y2 + z2)i
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where ami is a real constant for i = 0, 1, . . . , m.
Introducing f2m into equation (7) and performing some calculations, we have

yz
∂f2m−1

∂x
− xz

∂f2m−1

∂y
+ xy

∂f2m−1

∂z

=
m∑
i=0

[2(m − i)v1 + 2iv3 + c]ami (x
2 + y2)m−i (y2 + z2)i

+
m−1∑
i=0

2[(m − i)(v2 − v1)a
m
i + (i + 1)(v2 − v3)a

m
i+1]

×(x2 + y2)m−1−i (y2 + z2)iy2

−
m∑
i=0

ami

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)

×(x2 + z2)m−1−i+j (y2 + z2)i−j xy.

Using the transformations (8) and (9), from this last equation we obtain the following ordinary
differential equation:

df 2m−1

dw
= −

m∑
i=0

[2(m − i)v1 + 2iv3 + c]ami u
m−ivi

1(
±√

u − w2
) (

±√
v − w2

)

−
m−1∑
i=0

2[(m − i)(v2 − v1)a
m
i + (i + 1)(v2 − v3)a

m
i+1]um−i−1vi

× w2(
±√

u − w2
) (

±√
v − w2

)

+
m∑
i=0

ami

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)
um−1−i+j vi−j w

±√
v − w2

.

Integrating this equation with respect to w we obtain

f 2m−1 = −
m∑
i=0

[2(m − i)v1 + 2iv3 + c]ami u
m−ivi

∫
dw(

±√
u − w2

) (
±√

v − w2
)

−
m−1∑
i=0

2[(m − i)(v2 − v1)a
m
i + (i + 1)(v2 − v3)a

m
i+1]

×um−i−1vi
∫

w2dw(
±√

u − w2
) (

±√
v − w2

)

−
m∑
i=0

ami

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)
um−1−i+j vi−j

(
±

√
v − w2

)

+f
∗
2m−1(u, v)

where f
∗
2m−1 is an arbitrary function in u and v.

An easy computation gives∫
w2dw√

u − w2
√
v − w2

= −
∫ √

u − w2

√
v − w2

dw + u

∫
dw√

u − w2
√
v − w2

.
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Since ∫
dw√

u − w2
√
v − w2

and
∫ √

u − w2

√
v − w2

dw

are elliptic integrals of the first and second kind respectively (see, for instance, [4]), in order that
f2m−1 is a homogeneous polynomial of degree 2m−1, we must havef

∗
2m−1(x

2+z2, y2+z2) ≡ 0
and

[2(m − i)v1 + 2iv3 + c]ami = 0 i = 0, 1, . . . , m

(m − i)(v2 − v1)a
m
i + (i + 1)(v2 − v3)a

m
i+1 = 0 i = 0, 1, . . . , m − 1.

(10)

Therefore,

f2m−1 = −
m∑
i=0

ami

1∑
j=0

(4h)1−j

(
m − i

1 − j

)
(2h)j

(
i

j

)
(x2 + y2)m−1−i+j (y2 + z2)i−j z

= −
m−1∑
i=0

[4h(m − i)ami + 2h(i + 1)ami+1](x2 + y2)m−1−i (y2 + z2)iz. (11)

From equations (10) we distinguish the following four cases:

(i) v1 = v2 = v3, and then c = −2mv1;
(ii) v1 = v2, v2 �= v3, and then am1 = am2 = · · · = amm = 0, am0 �= 0 and c = −2mv1;

(iii) v1 �= v2, v2 = v3, and then am0 = am1 = · · · = amm−1 = 0, amm �= 0 and c = −2mv2;
(iv) v1 �= v2, v2 �= v3, and then v1 = v3, c = −2mv1 and ami �= 0 for i = 0, 1, . . . , m.

Case (i). v1 = v2 = v3 and c = −2mv1. Introducing f2m−1 into equation (7) with i = 2m−2
and performing some calculations, we obtain

yz
∂f2m−2

∂x
− xz

∂f2m−2

∂y
+ xy

∂f2m−2

∂z

=
m−1∑
i=0

2hv1[2(m − i)ami + (i + 1)ami+1](x2 + y2)m−1−i (y2 + z2)iz

+
m∑
i=0

ami 2
2∑

j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−2−i+j (y2 + z2)i−j xyz.

In the above computations, we used the following.

Lemma 4. For any non-negative integersm, s and i satisfyingm > s+i, the following equality
holds:
s∑

j=0

(4h)s−j

(
m − i

s − j

)
(2h)j

(
i

j

)
4h(m − s − i + j)(x2 + y2)m−1−s−i+j (y2 + z2)i−j

+
s∑

j=0

(4h)s−j

(
m − i

s − j

)
(2h)j

(
i

j

)
2h(i − j)(x2 + y2)m−s−i+j (y2 + z2)i−1−j

= (s + 1)
s+1∑
j=0

(4h)s+1−j

(
m − i

s + 1 − j

)
(2h)j

(
i

j

)
(x2 + y2)m−1−s−i+j (y2+z2)i−j .
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Proof. By straightforward computations we have

s∑
j=0

(4h)s−j

(
m − i

s − j

)
(2h)j

(
i

j

)
4h(m − s − i + j)(x2 + y2)m−1−s−i+j (y2 + z2)i−j

+
s∑

j=0

(4h)s−j

(
m − i

s − j

)
(2h)j

(
i

j

)
2h(i − j)

×(x2 + y2)m−s−i+j (y2 + z2)i−1−j

= (4h)s+1

(
m − i

s

)
(m − s − i)(x2 + y2)m−1−s−i (y2 + z2)i

+
s∑

j=1

(4h)s+1−j

(
m − i

s − j

)
(2h)j

(
i

j

)
(m − s − i + j)

×(x2 + y2)m−1−s−i+j (y2 + z2)i−j

+
s−1∑
j=0

(4h)s−j

(
m − i

s − j

)
(2h)j+1

(
i

j

)
(i − j)

×(x2 + y2)m−s−i+j (y2 + z2)i−1−j

+(2h)s+1

(
i

s

)
(i − s)(x2 + y2)m−i (y2 + z2)i−1−s

= (s + 1)(4h)s+1

(
m − i

s + 1

)
(x2 + y2)m−1−s−i (y2 + z2)i

+
s∑

j=1

(s + 1 − j)(4h)s+1−j

(
m − i

s + 1 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−1−s−i+j (y2 + z2)i−j

+
s∑

j=1

(4h)s+1−j

(
m − i

s + 1 − j

)
j (2h)j

(
i

j

)

×(x2 + y2)m−1−s−i+j (y2 + z2)i−j

+(s + 1)(2h)s+1

(
i

s + 1

)
(x2 + y2)m−i (y2 + z2)i−1−s

= (s + 1)
s+1∑
j=0

(4h)s+1−j

(
m − i

s + 1 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−1−s−i+j (y2 + z2)i−j .

This proves the lemma. �

From the previous equation inf2m−2 we obtain the following ordinary differential equation,
taking into account the changes (8) and (9):

f 2m−2

dw
= −

m−1∑
i=0

2hv1[2(m − i)ami + (i + 1)ami+1]um−1−ivi
1

±√
u − w2

−
m∑
i=0

ami 2
2∑

j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)
um−2−i+j vi−jw.
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Since ∫
dw√
u − w2

= arcsin

(
w√
u

)
(12)

in order that f2m−2(x, y, z) = f 2m−2(u, v,w) is a homogeneous polynomial in x, y and z, we
must have

hv1[2(m − i)ami + (i + 1)ami+1] = 0 for i = 0, 1, . . . , m − 1. (13)

Therefore,

f2m−2 = −
m∑
i=0

ami

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)
(x2 + z2)m−2−i+j (y2 + z2)i−j y2

+f ∗
2m−2(x

2 + y2, y2 + z2)

=
m∑
i=0

ami

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)
(x2 + z2)m−2−i+j (y2 + z2)i−j z2

−
m∑
i=0

ami

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)
(x2 + z2)m−2−i+j (y2 + z2)i+1−j

+f ∗
2m−2(x

2 + y2, y2 + z2)

where f ∗
2m−2 is an arbitrary function in x2 + y2 and y2 + z2. Without loss of generality, we

select

f2m−2 =
m∑
i=0

ami

2∑
j=0

(4h)2−j

(
m − i

2 − j

)
(2h)j

(
i

j

)
(x2 + z2)m−2−i+j (y2 + z2)i−j z2

+
m−1∑
i=0

am−1
i (x2 + y2)m−1−i (y2 + z2)i

where am−1
i is a real constant for i = 0, 1, . . . , m− 1. From condition (13) we distinguish the

following three cases.

Subcase 1. h = 0. Then we have

f2m−1 ≡ 0 f2m−2 =
m−1∑
i=0

am−1
i (x2 + y2)m−1−i (y2 + z2)i .

Introducing f2m−2 into equation (7) with i = 2m− 3 and performing some computations,
we obtain

yz
∂f2m−3

∂x
− xz

∂f2m−3

∂y
+ xy

∂f2m−3

∂z
= −2v1

m−1∑
i=0

am−1
i (x2 + y2)m−1−i (y2 + z2)i .

Using the transformations (8) and (9) and working in a similar way to solving f2m−1, we obtain

df 2m−3

dw
= 2v1

m−1∑
i=0

am−1
i um−1−ivi

1(
±√

u − w2
) (

±√
v − w2

) .

Similar to the proof of f2m−1, in order that f2m−3 is a homogeneous polynomial of degree
2m − 3 we must have

v1a
m−1
i = 0 for i = 0, 1, . . . , m − 1 (14)
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and f2m−3 ≡ 0. By recursive calculations, we obtain that for s = 2, 3, . . . , m − 1

f2m−2s =
m−s∑
i=0

am−s
i (x2 + y2)m−s−i (y2 + z2)i f2m−2s−1 ≡ 0

with conditions

v1a
m−s
i = 0 for s = 2, 3, . . . , m − 1 i = 0, 1, . . . , m − s. (15)

If v1 = 0, then c = v1 = v2 = v3 = 0. By (14) and (15) we obtain that

f =
m−1∑
s=0

m−s∑
i=0

am−s
i (x2 + y2)m−s−i (y2 + z2)i

is a polynomial first integral of degree 2m, where
∑m

i=0[ami ]2 �= 0 and am−s
i is an arbitrary

constant for s = 1, 2, . . . , m − 1 and i = 0, 1, . . . , m − s. This proves statement (a) with
h = 0 of theorem 1.

If v1 �= 0, then am−s
i = 0 for s = 1, 2, . . . , m − 1 and i = 0, 1, . . . , m − s. Hence

f =
m∑
i=0

ami (x
2 + y2)m−i (y2 + z2)i

is a Darboux polynomial with the constant cofactor k = −2mv1, where
∑m

i=0

[
ami

]2 �= 0. This
proves statement (b) of theorem 1.

Subcase 2. h �= 0 and v1 = 0. Then v1 = v2 = v3 = c = 0. Substituting f2m−2 into
equation (7) with i = 2m− 3 and performing some calculations which are similar to the proof
of f2m−1, we have

yz
∂f2m−3

∂x
− xz

∂f2m−3

∂y
+ xy

∂f2m−3

∂z
= −

m∑
i=0

ami 3
3∑

j=0

(4h)3−j

(
m − i

3 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−3−i+j (y2 + z2)i−j xyz2

−
m−1∑
i=0

am−1
i

1∑
j=0

(4h)1−j

(
m − 1 − i

1 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−2−i+j (y2 + z2)i−j xy.

Using the transformations (8) and (9), from this partial differential equation we obtain the
following ordinary differential equation:

df 2m−3

dw
=

m∑
i=0

ami 3
3∑

j=0

(4h)3−j

(
m − i

3 − j

)
(2h)j

(
i

j

)
um−3−i+j vi−jw

(
±

√
v − w2

)

+
m−1∑
i=0

am−1
i

1∑
j=0

(4h)1−j

(
m − 1 − i

1 − j

)
(2h)j

(
i

j

)
um−2−i+j vi−j w

±√
v − w2

.

Integrating this equation with respect to w and in a similar way to the proof of f2m−1, we obtain

f2m−3 = −
m∑
i=0

ami

3∑
j=0

(4h)3−j

(
m − i

3 − j

)
(2h)j

(
i

j

)
(x2 + y2)m−3−i+j (y2 + z2)i−j z3

−
m−1∑
i=0

am−1
i

1∑
j=0

(4h)1−j

(
m − 1 − i

1 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−2−i+j (y2 + z2)i−j z.
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Introducing f2m−3 into equation (7) with i = 2m − 4 and performing some calculations
which are similar to the proof of f2m−2, we have

yz
∂f2m−4

∂x
− xz

∂f2m−4

∂y
+ xy

∂f2m−4

∂z

=
m∑
i=0

ami 4
4∑

j=0

(4h)4−j

(
m − i

4 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−4−i+j (y2 + z2)i−j xyz3

+
m−1∑
i=0

am−1
i 2

2∑
j=0

(4h)2−j

(
m − 1 − i

2 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−3−i+j (y2 + z2)i−j xyz.

By using the changes (8) and (9) and working in a similar way to the proof of f2m−2 and f2m−3,
we obtain that

f 2m−4 =
m∑
i=0

ami

4∑
j=0

(4h)4−j

(
m − i

4 − j

)
(2h)j

(
i

j

)
um−4−i+j vi−j (v − w2)2

−
m−1∑
i=0

am−1
i

2∑
j=0

(4h)2−j

(
m − 1 − i

2 − j

)
(2h)j

(
i

j

)
um−3−i+j vi−jw2

+A2m−4(u, v)

where A2m−4 is an arbitrary function in u and v. Therefore, from the change (8) we have

f2m−4 =
m∑
i=0

ami

4∑
j=0

(4h)4−j

(
m − i

4 − j

)
(2h)j

(
i

j

)
(x2 + y2)m−4−i+j (y2 + z2)i−j z4

+
m−1∑
i=0

am−1
i

2∑
j=0

(4h)2−j

(
m − 1 − i

2 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−3−i+j (y2 + z2)i−j z2

−
m−1∑
i=0

am−1
i

2∑
j=0

(4h)2−j

(
m − 1 − i

2 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−3−i+j (y2 + z2)i−j+1 + A2m−4(x
2 + y2, y2 + z2).

In order that f2m−4 is a homogeneous polynomial of degree 2m− 4, without loss of generality
we can select

f2m−4 =
m∑
i=0

ami

4∑
j=0

(4h)4−j

(
m − i

4 − j

)
(2h)j

(
i

j

)
(x2 + y2)m−4−i+j (y2 + z2)i−j z4

+
m−1∑
i=0

am−1
i

2∑
j=0

(4h)2−j

(
m − 1 − i

2 − j

)
(2h)j

(
i

j

)
(x2 + y2)m−3−i+j

×(y2 + z2)i−j z2 +
m−2∑
i=0

am−2
i (x2 + y2)m−2−i (y2 + z2)i .

By recursive calculations, we can obtain that for l = 2, 3, . . . , m − 1

f2m−2l =
m∑
i=0

ami

2l∑
j=0

(4h)2l−j

(
m − i

2l − j

)
(2h)j

(
i

j

)
(x2 + y2)m−2l−i+j (y2 + z2)i−j z2l
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+
m−1∑
i=0

am−1
i

2l−2∑
j=0

(4h)2l−2−j

(
m − 1 − i

2l − 2 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−2l+1−i+j (y2 + z2)i−j z2l−2

+
m−2∑
i=0

am−2
i

2l−4∑
j=0

(4h)2l−4−j

(
m − 2 − i

2l − 4 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−2l+2−i+j (y2 + z2)i−j z2l−4

+ · · · +
m−l+1∑
i=0

am−l+1
i

2∑
j=0

(4h)2−j

(
m − l + 1 − i

2 − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−l−1−i+j (y2 + z2)i−j z2 +
m−l∑
i=0

am−l
i (x2 + y2)m−l−i (y2 + z2)i

=
l∑

s=0

m−s∑
i=0

am−s
i

2l−2s∑
j=0

(4h)2l−2s−j

(
m − s − i

2l − 2s − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−2l+s−i+j (y2 + z2)i−j z2l−2s .

f2m−2l−1 = −
l∑

s=0

m−s∑
i=0

am−s
i

2l−2s+1∑
j=0

(4h)2l+1−2s−j

(
m − s − i

2l + 1 − 2s − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−2l−1+s−i+j (y2 + z2)i−j z2l+1−2s .

Combining these two expressions we have

f2m−2l−1 = (−1)l
[l/2]∑
s=0

m−s∑
i=0

am−s
i

l−2s∑
j=0

(4h)l−2s−j

(
m − s − i

l − 2s − j

)
(2h)j

(
i

j

)

×(x2 + y2)m−l+s−i+j (y2 + z2)i−j zl−2s .

Hence, for the Rabinovich system the Darboux polynomial of degree 2m is

f =
2m−1∑
l=0

f2m−l =
2m−1∑
l=0

[l/2]∑
s=0

m−s∑
i=0

am−s
i

l−2s∑
j=0

(−4hz)l−2s−j

(
m − s − i

l − 2s − j

)
(−2hz)j

(
i

j

)

×(x2 + y2)m−l+s−i+j (y2 + z2)i−j .

For every given s (0 � s < m) the sum of the terms am−s
i with the same superscript m − s is

m−s∑
i=0

am−s
i

2m−1∑
l=2s

l−2s∑
j=0

(
m − s − i

l − 2s − j

)
(x2 + y2)m−l+s−i+j (−4hz)l−2s−j

×
(
i

j

)
(y2 + z2)i−j (−2hz)j

=
m−s∑
i=0

am−s
i

2m−1−2s∑
t=0

t∑
j=0

(
m − s − i

t − j

)
(x2 + y2)m−s−i−(t−j)(−4hz)t−j

×
(
i

j

)
(y2 + z2)i−j (−2hz)j

=
m−s∑
i=0

am−s
i

i∑
j=0

2m−1−2s∑
t=j

(
m − s − i

t − j

)
(x2 + y2)m−s−i−(t−j)(−4hz)t−j
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×
(
i

j

)
(y2 + z2)i−j (−2hz)j

=
m−s∑
i=0

am−s
i

i∑
j=0

2m−1−2s−j∑
t=0

(
m − s − i

t − j

)
(x2 + y2)m−s−i−t (−4hz)t

×
(
i

j

)
(y2 + z2)i−j (−2hz)j

=
m−s∑
i=0

am−s
i

m−s−i∑
t=0

(
m − s − i

t

)

×(x2 + y2)m−s−i−t (−4hz)t
i∑

j=0

(
i

j

)
(y2 + z2)i−j (−2hz)j

=
m−s∑
i=0

am−s
i (x2 + y2 − 4hz)m−s−i (y2 + z2 − 2hz)i .

So, we obtain that

f =
m−1∑
s=0

m−s∑
i=0

am−s
i (x2 + y2 − 4hz)m−s−i (y2 + z2 − 2hz)i

is a polynomial first integral of degree 2m, where
∑m

i=0 a
m
i �= 0. This proves the statement (a)

of theorem 1.

Subcase 3. h �= 0 and v1 �= 0. Then from condition (13) we have 2(m−i)ami +(i+1)ami+1 = 0
for i = 0, 1, . . . , m − 1, that is

ami = (−2)i
(
m

i

)
am0 .

Hence, we obtain that

f2m =
m∑
i=0

ami (x
2 + y2)m−i (y2 + z2)i =

m∑
i=0

(−2)i
(
m

i

)
am0 (x

2 + y2)m−i (y2 + z2)i

= am0 [(x2 + y2) − 2(y2 + z2)]2 = am0 (x
2 − y2 − 2z2)m

f2m−1 ≡ 0.

From equation (7) with i = 2m − 2 and working in a similar way to solve f2m, we can
easily obtain that

f2m−2 =
m−1∑
i=0

am−1
i (x2 + y2)m−1−i (y2 + z2)i .

Inserting f2m−2 into equation (7) with i = 2m − 3 and performing some computations, we
have

yz
∂f2m−3

∂x
− xz

∂f2m−3

∂y
+ xy

∂f2m−3

∂z
= −

m−1∑
i=0

2v1a
m−1
i (x2 + y2)m−1−i (y2 + z2)i

= −
m−2∑
i=0

[4h(m − 1 − i)am−1
i + 2h(i + 1)ami+1](x2 + y2)m−2−i (y2 + z2)ixy.
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Using the changes of the variables (8) and (9), from this equation we obtain the following
ordinary differential equation:

df 2m−3

dw
=

m−1∑
i=0

2v1a
m−1
i um−1−ivi

1(
±√

u − w2
) (

±√
v − w2

)

+
m−2∑
i=0

[4h(m − 1 − i)am−1
i + 2h(i + 1)ami+1]um−2−ivi

w

±√
v − w2

.

Integrating this equation with respect to w, we obtain

f 2m−3 =
m−1∑
i=0

2v1a
m−1
i um−1−ivi

∫
dw(

±√
u − w2

) (
±√

v − w2
)

−
m−2∑
i=0

[4h(m − 1 − i)am−1
i + 2h(i + 1)ami+1]um−2−iviz + A2m−3(u, v)

where A2m−3 is an arbitrary function in u and v. So, in order that fm−1(x, y, z) =
f m−1(u, v,w) is a homogeneous polynomial of degree 2m − 3, we must have A2m−3(x

2 +
y2, y2 + z2) ≡ 0 and v1a

m−1
i = 0 for i = 0, 1, . . . , m − 1. This means that am−1

i = 0 for
i = 0, 1, . . . , m − 1. Moreover, we obtain that f2m−3 ≡ 0.

By recursive calculations and in a similar way to solving f2m−2 and f2m−3, we can obtain
that f2m−l ≡ 0 for l = 4, 5, . . . , 2m. Therefore, the function

f =
2m∑
i=0

f2m = am0 (x
2 − y2 − 2z2)m

is a Darboux polynomial of degree 2m with the constant cofactor −2mv1 for the Rabinovich
system. This proves statement (c) of theorem 1.

Case (ii). v1 = v2 and v2 �= v3. Then

f2m = am0 (x
2 + y2)m f2m−1 = −4hmam0 (x

2 + y2)m−1z.

Introducing f2m−1 into (7) with i = 2m−2 and performing some computations, we obtain

yz
∂f2m−2

∂x
− xz

∂f2m−2

∂y
+ xy

∂f2m−2

∂z
= −4(v3 − 2v1)mham0 (x

2 + y2)m−1z

+2(4h)2

(
m

2

)
am0 (x

2 + y2)m−2xyz.

By using the changes (8) and (9) and working in a similar way to case (i), we obtain

f 2m−2 = 4(v3 − 2v1)mham0 u
m−1 arcsin

w√
u

− (4h)2

(
m

2

)
am0 u

m−2w2 + A2m−2(u, v)

where A2m−2 is an arbitrary function in u and v. In order that f2m−2(x, y, z) is a homogeneous
polynomial of degree 2m − 2, we must have h(v3 − 2v1) = 0 and

f2m−2 = (4h)2

(
m

2

)
am0 (x

2 + y2)m−2z2 +
m−1∑
i=0

am−1
i (x2 + y2)m−1−i (y2 + z2)i

where am−1
i are real constants for i = 0, 1, . . . , m − 1.
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Subcase 1. h = 0. From equation (7) with i = 2m − 3 we obtain

yz
∂f2m−3

∂x
− xz

∂f2m−3

∂y
+ xy

∂f2m−3

∂z
= −

m−1∑
i=0

2v1a
m−1
i (x2 + y2)m−1−i (y2 + z2)i

+
m−1∑
i=0

2i(v3 − v1)a
m−1
i (x2 + y2)m−1−i (y2 + z2)i−1z2.

From this equation and using the method of characteristic curves for solving linear partial
differential equations, we obtain

f 2m−3 =
m−1∑
i=0

2v1a
m−1
i um−1−ivi

∫
dw(

±√
u − w2

) (
±√

v − w2
)

−
m−1∑
i=0

2i(v3 − v1)a
m−1
i um−1−ivi−1

∫ ±√
v − w2

±√
u − w2

+ A2m−3(u, v).

In order that f2m−3 is a homogeneous polynomial of degree 2m − 3, we must have
A2m−3(x

2 + y2, y2 + z2) ≡ 0, v1a
m−1
i = 0 and i(v3 − v1)a

m−1
i = 0 for i = 0, 1, . . . , m − 1.

Since v1 �= v3, we obtain that v1a
m−1
0 = 0 and am−1

i = 0 for i = 1, 2, . . . , m − 1.
If v1 = 0, then c = v1 = v2 = 0, v3 �= 0, and

f2m−2 = am−1
0 (x2 + y2)m−1 f2m−3 ≡ 0.

By recursive calculations and in a similar way to solving f2m−2 and f2m−3 we obtain that for
l = 2, 3, . . . , m − 1

f2m−2l = am−l
0 (x2 + y2)m−l f2m−2l−1 ≡ 0.

Therefore, we obtain the function

f =
m∑
i=1

ai0(x
2 + y2)i

which is a polynomial first integral of degree 2m, where am0 �= 0 and ai0 is an arbitrary constant
for i = 1, 2, . . . , m − 1. This proves statement (d) of theorem 1.

If v1 �= 0, then am−1
0 = 0. So, the function f2m−2 ≡ 0. By recursive calculations, we can

obtain that f2m−l ≡ 0 for l = 3, 4, . . . , 2m. Therefore, we obtain the function

f = am0 (x
2 + y2)m

which is a Darboux polynomial with the constant cofactor −2mv1. This proves statement (e)
of theorem 1.

Subcase 2. h �= 0, then v3 = 2v1. Since v2 = v1 and v3 �= v2, this verifies that v1 �= 0.
Introducing f2m−2 into equation (7) with i = 2m− 3 and performing some computations give

yz
∂f2m−3

∂x
− xz

∂f2m−3

∂y
+ xy

∂f2m−3

∂z
= −(4h)3 1

3

(
m

3

)
am0 (x

2 + y2)m−3xyz2

−
m−1∑
i=0

2v1a
m−1
i (x2 + y2)m−1−i (y2 + z2)i

+
m−1∑
i=0

2iv1a
m−1
i (x2 + y2)m−1−i (y2 + z2)i−1z2

−
m−2∑
i=0

[4h(m − 1 − i)am−1
i + 2h(i + 1)am−1

i+1 ](x2 + y2)m−2−i (y2 + z2)ixy.
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Using the changes (8) and (9), from this equation we obtain the following ordinary differential
equation:

df 2m−3

dw
= (4h)3 1

3

(
m

3

)
am0 u

m−3w
(
±

√
v − w2

)

+
m−1∑
i=0

2v1a
m−1
i um−1−ivi

1(
±√

u − w2
) (

±√
v − w2

)

−
m−1∑
i=0

2iv1a
m−1
i um−1−ivi−1 ±√

v − w2

±√
u − w2

+
m−2∑
i=0

[4h(m − 1 − i)am−1
i + 2h(i + 1)am−1

i+1 ]um−2−ivi
w

±√
v − w2

.

Integrating this equation with respect to w, we have

f 2m−3 = −(4h)3

(
m

3

)
am0 u

m−3
(
±

√
v − w2

)3

+
m−1∑
i=0

2v1a
m−1
i um−1−ivi

∫
dw(

±√
u − w2

) (
±√

v − w2
)

−
m−1∑
i=0

2iv1a
m−1
i um−1−ivi−1

∫ ±√
v − w2

±√
u − w2

dw

−
m−2∑
i=0

[4h(m − 1 − i)am−1
i + 2h(i + 1)am−1

i+1 ]um−2−ivi
(
±

√
v − w2

)

+A2m−3(u, v)

where A2m−3 is an arbitrary function in u and v. In order that f2m−3 is a homogeneous
polynomial of degree 2m − 3, we must have A2m−3(x

2 + y2, y2 + z2) ≡ 0, v1a
m−1
i = 0 for

i = 0, 1, . . . , m − 1. This means that am−1
i = 0 for i = 0, 1, . . . , m − 1. Moreover, we have

f2m−3 = −(4h)3

(
m

3

)
am0 (x

2 + y2)m−3z3.

By recursive calculations we obtain that

f2m−s =


(−1)s(4h)s

(
m

s

)
am0 (x

2 + y2)m−szs for s = 4, 5, . . . , m

0, for s = m + 1,m + 2, . . . , 2m.

Hence, the Darboux polynomial of degree 2m is

f =
m∑
s=0

(−1)s(4h)s
(
m

s

)
am0 (x

2 + y2)m−szs = am0 (x
2 + y2 − 4hz)m

with the cofactor −2mv1. This proves statement (f) of theorem 1.

Case (iii). v1 �= v2 and v2 = v3. Then c = −2mv2, and

f2m = amm(y
2 + z2)m f2m−1 = −2hmamm(y

2 + z2)m−1z.
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Introducing f2m−1 into equation (7) with i = 2m− 2 and performing some computations, we
obtain

yz
∂f2m−2

∂x
− xz

∂f2m−2

∂y
+ xy

∂f2m−2

∂z
= 2hmv2a

m
m(y

2 + z2)m−1z

+(2h)22

(
m

2

)
amm(y

2 + z2)m−2xyz.

From this equation and using the changes (8) and (9), we can obtain

f 2m−2 = −2hmv2a
m
mv

m−1 arcsin
w√
u

−(2h)2

(
m

2

)
ammv

m−2w2 + A2m−2(u, v).

In order that f2m−2 is a polynomial, we must have hv2 = 0.

Subcase 1. h = 0. Then

f2m−1 = 0 f2m−2 =
m−1∑
i=0

am−1
i (x2 + y2)m−1−i (y2 + z2)i .

Inserting f2m−2 into equation (7) with i = 2m − 3 and performing some computations, we
obtain

yz
∂f2m−3

∂x
− xz

∂f2m−3

∂y
+ xy

∂f2m−3

∂z

=
m−1∑
i=0

am−1
i [2(m − 1 − i)v1 + 2(i − m)v2](x2 + y2)m−1−i (y2 + z2)i

+
m−1∑
i=0

am−1
i 2(m − 1 − i)(v2 − v1)(x

2 + y2)m−2−i (y2 + z2)iy2.

Working in a similar way to the proof of f2m−1, we obtain from this equation that

f 2m−3 = −
m−1∑
i=0

am−1
i [2(m − 1 − i)v1 + 2(i − m)v2]um−1−ivi

×
∫

dw(
±√

u − w2
) (

±√
v − w2

) −
m−1∑
i=0

am−1
i 2(m − 1 − i)(v2 − v1)

×um−2−ivi
∫

w2dw(
±√

u − w2
) (

±√
v − w2

) + A2m−3(u, v).

In order to obtain a homogeneous polynomial solution f2m−3 of degree 2m− 3, we must have
A2m−3 ≡ 0, and

[2(m − 1 − i)v1 + 2(i − m)v2]am−1
i = 0 (m − 1 − i)(v2 − v1)a

m−1
i = 0

for i = 0, 1, . . . , m − 1. This means that am−1
i = 0 for i = 0, 1, . . . , m − 2 and v2a

m−1
m−1 = 0.

Moreover, we have f2m−2 = am−1
m−1(y

2 + z2)m−1 and f2m−3 ≡ 0.
If v2 = 0, then c = v2 = v3 = 0 and v1 �= 0. By recursive calculations and in a similar

way to solve f2m−2 and f2m−3, we can obtain that for l = 2, 3, . . . , m − 1

f2m−2l = am−l
m−l (y

2 + z2)m−l f2m−2l−1 ≡ 0.

Therefore, we obtain the polynomial first integral of degree 2m

f =
m∑
i=1

ai(y2 + z2)i
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where am �= 0 and ai is an arbitrary constant for i �= 0. This proves statement (g) with h = 0
of theorem 1.

If v2 �= 0, then am−1
m−1 = 0. So, the function f2m−2 ≡ 0. By recursive calculations, we

can prove that f2m−l ≡ 0 for l = 4, 5, . . . , 2m. Hence, we obtain the Darboux polynomial of
degree 2m:

f = amm(y
2 + z2)m

with the cofactor −2mv2. This proves statement (h) of theorem 1.

Subcase 2. h �= 0 and v2 = 0. then c = v3 = 0 and v1 �= 0. Moreover, we have

f2m−2 = −(2h)2

(
m

2

)
amm(y

2 + z2)m−2y2 + A(x2 + y2, y2 + z2)

= (2h)2

(
m

2

)
amm(y

2 + z2)m−2z2 +
m−1∑
i=0

am−1
i (x2 + y2)m−1−i (y2 + z2)i .

Introducing f2m−2 into equation (7) with i = 2m− 3 and performing some computations give

yz
∂f2m−3

∂x
− xz

∂f2m−3

∂y
+ xy

∂f2m−3

∂z
= −(2h)33

(
m

3

)
amm(y

2 + z2)m−3xyz2

+
m−1∑
i=0

am−1
i 2(m − 1 − i)v1(x

2 + y2)m−2−i (y2 + z2)ix2

−
m−2∑
i=0

[4h(m − 1 − i)am−1
i + 2h(i + 1)am−1

i+1 ](x2 + y2)m−2−i (y2 + z2)ixy.

From this equation and using the changes (8) and (9), we can obtain the following solution:

f 2m−3 = −(2h)3

(
m

3

)
ammv

m−3
(
±

√
v − w2

)3

−
m−1∑
i=0

am−1
i 2(m − 1 − i)v1u

m−2−ivi
∫ ±√

u − w2

±√
v − w2

dw

−
m−2∑
i=0

[4h(m − 1 − i)am−1
i + 2h(i + 1)am−1

i+1 ]um−2−ivi
(
±

√
v − w2

)

+A2m−3(u, v)

where A2m−3 is an arbitrary function in u and v. In order that f2m−3(x, y, z) = f 2m−3(u, v, z)

is a homogeneous polynomial of degree 2m − 3, we must have A2m−3(x
2 + y2, y2 + z2) ≡ 0

and

(m − 1 − i)am−1
i = 0 for i = 0, 1, . . . , m − 1.

This means that am−1
i = 0 for i = 0, 1, . . . , m − 2. Therefore, we obtain that

f2m−2 = (2h)2

(
m

2

)
amm(y

2 + z2)m−2z2 + am−1
m−1(y

2 + z2)m−1

f2m−3 = −(2h)3

(
m

3

)
amm(y

2 + z2)m−3z3 − 2h(m − 1)am−1
m−1(y

2 + z2)m−2z.

Working in a similar way to subcase 2 of case (i), we can obtain recursively that the
Darboux polynomial of degree 2m is

f =
m∑
i=1

ai(y
2 + z2 − 2hz)i
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where am �= 0 and ai are arbitrary constants for i �= 0. This proves statement (g) of theorem 1.

Case (iv). v1 �= v2 and v2 �= v3. Then v1 = v3, c = −2mv1 and (m− i)ami + (i + 1)ami+1 = 0
for i = 0, 1, . . . , m − 1, that is

ami = (−1)i
(
m

i

)
am0 i = 1, 2, . . . , m.

Therefore, we have

f2m =
m∑
i=0

ami (x
2 + y2)m−i (y2 + z2)i = am0 (x

2 − z2)m

f2m−1 = −2hmam0 (x
2 − z2)m−1z.

Introducing f2m−1 into equation (7) with i = 2m − 2 and working in a similar way to solve
f2m−1, we can prove that

f2m−2 = (2h)2

(
m

2

)
am0 (x

2 − z2)m−2z2 +
m−1∑
i=0

am−1
i (x2 + y2)m−1−i (y2 + z2)i

with the condition hv1 = 0.

Subcase 1. h = 0. Then working in a similar way to the proof of subcase 1 of case (iii), we
can obtain that if v1 = 0 the Darboux polynomial of degree 2m is

f =
m∑
i=1

ai(x
2 − z2)i

where am �= 0 and ai is an arbitrary constant for i �= m. This proves statement (j) with h = 0
of theorem 1.

If v1 �= 0, the Darboux polynomial of degree 2m is

f = am0 (x
2 − z2)m

with the cofactor −2mv1. This proves statement (i) of theorem 1.

Subcase 2. h �= 0. Then v1 = v3 = c = 0 and v2 �= 0. Then working in a similar way to
the proof of subcase 2 of case (i) and of subcase 2 of case (iii), we can prove that the Darboux
polynomial of degree 2m is

f =
m∑
i=1

ai(x
2 − z2 − 2hz)i

where am �= 0 and ai is an arbitrary constant for i �= m. This proves statement (j).
Combining all the results we complete the proof of the theorem.
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